Stem Cell Laboratory

Stem Cell Laboratory

Mesenchymal stem cells are "mother cells" that have the potential to form cells of the placenta. This allows the placenta to grow, and in doing so, nurture the rapidly growing fetus.

Placental mesenchymal stem cells are remarkable cells. Not only can they form the cells of the placenta but if treated with special combinations of growth factors they can also be triggered to form bone, fat, cartilage and muscle cells. Other laboratories have coaxed placental mesenchymal stem cells to form cells that are similar to liver cells and even nerve cells.

These special properties of placental mesenchymal stem cells make them suitable for many clinical studies that assess their ability to renew or repair a wide range of diseased or damaged tissues. These studies require 10-100 million cells to treat each patient. The average placenta (~0.7kg) is an abundant source of mesenchymal cells, with the additional important advantage that the mesenchymal stem cells can be obtained through non-invasive means with minimal ethical concerns. Placentas represent an immense, underutilized resource for the harvesting and production of large quantities of mesenchymal stem cells.

Cell and tissue damage are a feature of the clinically important pregnancy disorders of preeclampsia and fetal growth restriction. The long term research goal of the Kalionis laboratory is to exploit the regenerative and repair capacity of mesenchymal stem cells to develop new therapies to reduce or repair the cell and tissue damage associated with preeclampsia and fetal growth restriction.

Current Stem Cell projects

The prognosis/diagnosis of common pregnancy complications utilising genetic material found in extracellular vesicles derived from maternal blood and urine. CI's: Kalionis, Georgiou, Brennecke (#16-30 2018-2021)
The aim of this case-control study is to test the hypothesis that RNA derived from extracellular vesicles is differentially expressed in presymptomatic women who subsequently develop complications of pregnancy including preeclampsia, spontaneous preterm birth, gestational diabetes, fetal growth restriction and fetal macrosomia. Each with an incidence of 5 to 10%, these conditions are responsible for the majority of obstetric and paediatric morbidities that can impact on lifelong health.
Extracellular vesicles will be isolated from maternal blood (plasma) and urine collected longitudinally, every 4 weeks during the latter half of pregnancy. RNA will be isolated from microvesicles and exosomes and amplified using routine laboratory methods. Specific RNA expression that differentiates between healthy control pregnancies and complicated pregnancies may be useful in predicting disease states before they become clinically manifest. The early identification of women at risk of developing pregnancy complications would allow the triage of women into appropriate models of care and the implementation of early preventative or therapeutic interventions to minimise maternal and fetal morbidity.

Development of a cell-free approach using extracellular vesicles from stem cells derived from the placenta and associated tissues and fluids for the treatment of preeclampsia and related medical diseases and conditions CI's: Kalionis, Dixon, Lichtfuss, Brennecke (#16-28 2016-2023)
Our focus is on pregnancy disorders, specifically preeclampsia; the most common serious medical complication of pregnancy. A major feature of preeclampsia is damage to the cells that line the mother's blood vessels. These cells are called endothelial cells. Most stem cell therapies use whole stem cells to repair damaged cells and tissues. However, there are significant problems with this strategy. For example, whole stem cells can take a long time to act. For treating preeclampsia, the ideal stem cell-based treatment is one that acts relatively quickly.
Stem cells secrete very small particles, encased in a membrane sphere, which are 100-200 times smaller than the whole stem cell. These particles are called extracellular vesicles. Extracellular vesicles released by stem cells are rapidly taken up by damaged cells, and once taken up the extracellular vesicles release factors that allow the damaged cell to recover. These properties of extracellular vesicles make them excellent potential therapeutic tools in a fast-acting treatment of the type of cell damage typically found in preeclampsia.
Our aim is to prepare extracellular vesicles from stem cell lines derived from the placenta and associated tissues and fluids, and use a variety of assays of cell health to determine which extracellular vesicles are optimal for repairing the cellular damage typically found in preeclampsia, and to determine the mechanism(s) by which such repair is mediated.
The knowledge gained from our proposed study will lay the foundations for developing novel cell-free therapies not only to treat preeclampsia and related diseases, but potentially also other medical disorders and conditions.

Using placental tissue to improve stem cell growth. CI's: Heath, Kalionis, Manuelpillai, Brennecke, Simpson (#14-35 2014-2021) 
Adult stem cells isolated from various tissues have attracted great clinical interest for their therapeutic potential. A major bottleneck in the clinical use of adult stem cells is the need to greatly expand their numbers in cell culture to achieve clinically useful numbers of cells. However, cell culture expansion of adult stem cells results in the loss of important properties. Growing adult stem cells on biological surfaces that are prepared from immature stem cells shows promise in improving growth and maintaining adult stem cell properties during cell culture expansion. However, fetus-derived immature stem cells have significant legal and ethical concerns as sources for the preparation of biological substrates. The placenta, umbilical cord and fetal membranes are abundant, readily available and ethically acceptable sources of immature stem cells, which can be used to prepare biological surfaces. The general hypothesis is that biological substrates derived from stem cells of the placenta, umbilical cord and fetal membranes are a superior platform for the growth and maintenance of adult stem cells.

Reduced stem cell resistance to oxidative stress contributes to the pathogenesis of preeclampsia. CI's Kalionis, Brennecke (#12/42 2012-2021)
Damage to blood vessel walls is thought to be a key step in the causation of preeclampsia. This damage is caused by stress factors in the blood, which are at much higher levels in preeclampsia affected blood vessels than blood vessels in normal pregnancy. We need to understand how cells respond to high levels of stress in order to design new therapies to combat cell stress and minimise blood vessel wall damage. We showed that stem cells are intimately associated with blood vessel walls in the decidua, the tissue located between the placenta and the muscular uterine wall, which plays a crucial role in pregnancy. Decidua is a major source of stress products in preeclampsia and stem cells in the blood vessel walls are exposed to these stress products that cause damage to blood vessel walls. We have evidence that stem cells have reduced capacity to respond to cell stress in preeclampsia. The overall hypothesis of the project is that the reduced ability of decidua stem cells to respond to stress contributes to the development of preeclampsia. The overall aim is to identify important stress genes that are abnormal in preeclampsia affected decidua stem cells.

Abnormal stem cells and their role in the most common, serious human pregnancy disorder: Pre-Eclampsia. CI's Kalionis, Murthi, Gude, Brennecke (#10/49 2011-2021)
The therapeutic potential of human placental mesenchymal stem cells drives current research. But, the function of these stem cells in the placenta and their contribution to human pregnancy disorders is unknown. In many organs, mesenchymal stem cells are found between endothelial cells of the vessel walls and the surrounding smooth muscle cells, and they interact with these two cell types and modify their functions. We have shown this same arrangement of cells in the maternal decidual blood vessels. These vessels are critical to early placental development as they are invaded by specialised fetal trophoblast cells, which replace the smooth muscle cells and endothelial cells. This creates modified maternal vessels capable of supplying sufficient blood to the placenta, which is essential to support the rapidly growing fetus. We propose that decidua basalis mesenchymal stem cells (DMSCs) play an important role in the remodelling of maternal uterine vessels. This is a novel concept in placental biology.
Pre-eclampsia (PE) is a disorder characterised by the pregnancy-induced onset of hypertension, proteinuria, and edema in the mother. PE is the most common and serious disorder of human pregnancy. Severe PE affects about 1-2% of all pregnancies (5,000 cases per annum) in Australia whilst mild PE affects up to 10% of all pregnancies. One of the hallmarks of PE is shallow invasion of the maternal uterine vessels. In PE, we have evidence that DMSCs are abnormal and predict there are adverse consequences on the functions of smooth muscle cells and endothelial cells. This project will establish DMSCs as a new and potentially important player in the pathobiology of pre-eclampsia. In this study, our overall aims are to;
1. Investigate the function(s) of DMSCs in normal placental development and in pre-eclampsia.
2. Explore the molecular mechanisms underlying defective DMSC functions by identifying genes and biological pathways that show altered expression in PE-affected DBMSCs.

Stem Cell Team

Current Senior Research Staff:
Dr Bill Kalionis, Dr Harry Georgiou, Dr Maria Kokkinos, Prof Shaun Brennecke

Current Research Staff:
Janet Stevenson

Current PhD Students:
Michael Yang, Shixuan Zheng

Current Masters Students:
Manal Alshabibi

Current Postgraduate Researchers:
Azadeh Allahyari (MSc), Tao Huang (PhD)

Current Research Midwives:
Sue Duggan, Moira Stewart

Key Research Collaborators:
Dr Daniel Heath, Department of Chemical and Biomolecular Engineering, University of Melbourne, Victoria, Australia
Assoc Prof Wojtek Chrzanowski, The University of Sydney, Nano Institute Sydney University, NSW, Australia
Dr Ian Dixon, Altnia Pty Ltd
Dr Gregor Lichtfuss Exopharm Pty Ltd
Dr Patrick James, Exopharm Ltd
Dr Ramin Khanabdali. Exopharm Ltd
Dr Padma Murthi, Monash University, Victoria, Australia
Assoc Prof Andrea O’Connor, Department of Chemical and Biomolecular Engineering, University of Melbourne, Victoria, Australia
Assoc Prof Christiane Theda, Newborn Research Centre, Royal Women’s Hospital, Victoria , Australia
Dr Mark Pertile, VCGS, Murdoch Children’s Research Institute, Royal Children's Hospital, Victoria, Australia
Prof Anthony Perkins, Griffith University, Queensland, Australia
Dr Shijin Xia, Shanghai Institute of Geriatrics, Huadong Hospital, Fudan University, Shanghai, China 

Past Senior Staff:
Dr Padma Murthi, Dr Rosemary Keogh, Dr Ursula Manuelpillai, Dr Neil Gude, Dr Rishka Pace

Past Staff:
Sue Nisbet, Melissa Duggan, Debora Singgih

Past Students:
PhD: Aida Shakouri Motlagh, Ramin Khanabdali, Gina Kusuma, Batla Al Sowayan, Sharon Qin, Natalie Castrechini
MSc: Joan Wijaya, Jancy Johnson
BSc (Hons): Chelsea Perera, Jess Bahn, Clare Vincent, Sarah Wilkinson, Claire Grant, Sophia Hill, Christopher Turner, Rosemary Gunawan, Pamela Anjara
AMS/MDRP:  Sarah Wilkinson, Wei-I-Lee, Anastasia Agusto

Past Visiting Researchers:
Associate Professor Haiying Lui, Qilu Hospital of Shandong University, China
Associate Professor Aiwu Shi, Nanjing Medical University, China

Student Awards and Prizes

Shixuan Zheng
APA Scholarship, Department of Obstetrics and Gynaecology, Melbourne University

Michael Yang
APA Scholarship, Dept of Chemical and Biomolecular Engineering, Melbourne University 2017

Aida Shakouri-Motlagh
Melbourne School of Engineering Clive Pratt Travel Award 2018
Best Tutor Award, School of Chemical and Biomedical Engineering 2017
School of Engineering, University of Melbourne, Travel Scholarship 2017
EMBL-Social Media Reporter (European Molecular Biology Laboratory) 2017
Particulate Fluids Processing Centre (PFPC) Travel Award 2017
Australian Society for Biomaterials and Tissue Engineering (ASBTE) Conference Travel Award 2017
Melbourne International Fee Remission Scholarship (MIFRS) 2017

Ramin Khahabdali
Elsevier Award for Early Career Researchers 2018
People’s Choice Award. University of Melbourne, Department of Obstetrics and Gynaecology Symposium. 2017
EMBL Advanced Training Centre Corporate Partnership Programme Fellowship 2017
Jomar Life Sciences, Early Career Investigator Award 2016
APA Scholarship, Department of Obstetrics and Gynaecology, Melbourne University

Jess Bahn
Department of Obstetrics & Gynaecology RWH Honours Award 2016

Gina Kusuma
Dr Hubert Sydney Jacobs Memorial Scholarship, Department of Obstetrics and Gynaecology 2017
Royal Women’s Hospital Research Week, New Investigator Award 2016
NSCFA Travel Award 2015
Australian Stem Cell Centre Scholarship from Australian Stem Cell Centre (ASCC)
APA Scholarship from the University of Melbourne
The Elsevier Placenta New Investigator Award 2013 for the best oral presentation by a new investigator at the International Federation of Placenta Associations (IFPA), Whistler, Canada, September 2013
Y.W. Loke Award, Travel Award, International Federation of Placenta Associations (IFPA) 2013, Whistler, Canada, September 2013
Student Travel Fellowship from Singapore Stem Cell Society (SSCS) to attend SCSS Symposium, Singapore, 2012
Student Travel Award from Australasian Society for Stem Cell Research (ASSCR) to attend AHRMC Congress, Adelaide, 2012
Student Travel Grant from Society of Reproductive Biology to attend World Congress of Reproductive Biology, Cairns, 2011

Batla Al Sowayan 
National Guard Scholarship, Saudi Arabia 2011
Student Travel Grant from Society of Reproductive Biology to attend World Congress of Reproductive Biology in Cairns, 2011

Sharon Qin
University of Melbourne Felix Meyer Scholarship
Recipient of a Royal Women’s Hospital Scholarship

Christopher Turner
Department of Obstetrics and Gynaecology, Honours Award, Royal Melbourne Hospital Academic Centre

Natalie Castrechini
Recipient of a Wenkart scholarship (extended)
Recipient of a University of Melbourne Department of Obstetrics and Gynaecology Departmental Scholarship
Recipient of a Royal Women’s Hospital Travel Grant
Recipient of a Loke New Investigator Travel Award, 13th International Federation for Placental Associations Conference, Kingston Canada,17-25 August 2007
Received a poster of merit award, 13th International Federation for Placental Associations Conference, Kingston Canada,17-25 August 2007
Recipient of a ISSCR Travel Award to attend the ISSCR International Conference, Cairns, Queensland 17-20 June 2007

Stem Cell publications

59 Wijaya JC, Khanabdali R, Georgiou HM, Kokkinos M, James PF, Shaun P. Brennecke SP, and Kalionis B. Functional Changes in Decidual Mesenchymal Stem/ Stromal Cells are Associated with Spontaneous Onset of Labour. Molecular Human Reproduction Accepted 4 Jun 2020
58 Wijaya JC, Khanabdali R, Georgiou HM, and Bill Kalionis B. Ageing in Human Parturition: Impetus of the Gestation Clock in the Decidua, Biology of Reproduction Accepted 23 June 2020
57 Basmaeil Y, Al Rashid M, Khatlani T, AlShabibi M, Bahattab E, Abdullah ML, Abumary, Kalionis B, Massoudi S, AbuMaree M (2020) Preconditioning of Human Decidua Basalis Mesenchymal Stem/ Stromal Cells with Glucose Increased Their Engraftment and Anti-diabetic Properties Tissue Eng Regen Med 17(2):209-222.
56 Yang M., Kalionis B Heath DE Biomaterials Science Series No. 6 “Decellularized Extracellular Matrix: Characterization, Fabrication and Applications” Edited by Tetsuji Yamaoka and Takashi Hoshiba” Chpt 14, Pgs 259-285© The Royal Society of Chemistry 2020 Published by the Royal Society of Chemistry, www.rsc.org
55 Xia S, Zhou C, Kalionis B, Shuang X, Ge H, Gao W. (2020) Combined antioxidant, anti-inflammatory and mesenchymal stem cell treatment: a possible therapeutic direction in elderly patients with chronic obstructive pulmonary disease. Ageing and Disease 11(1):129-140.
54 Kim SY, Joglekar MV, Hardikar AA, Phan TH, Khanal D, Tharkar P, Limantoro C, Johnson J, Kalionis B and Chrzanowski W. (2019) Placenta stem/stromal cell-derived extracellular vesicles for potential use in lung repair. Proteomics. 19(17)  :e1800166.
53 Wan W, Cao L, Kalionis B, Murthi P, Xia S, Guan Y. (2019) Iron Deposition Leads to Hyperphosphorylation of Tau and Disruption of Insulin Signaling. Front Neurol. 2019 10:607. doi: 10.3389/fneur.2019.00607. eCollection 2019.
52 Kim SY, Phan TH, Limantoro C, Kalionis B, Chrzanowski W. (2019) Isolation and Characterization of Extracellular Vesicles from Mesenchymal Stromal Cells. Methods Mol Biol. 2029:15-23. doi: 10.1007/978-1-4939-9631-5_2.
51 Al-Sowayan, B, Keogh RJ, Abumaree M, Georgiou, HM and Kalionis B. (2019) Valproic acid simulates in vitro migration of the placenta-derived mesenchymal stem/stromal cell line CMSC29. Stem Cell Investigation. 6:3
50 Al-Sowayan, B, Keogh RJ, Abumaree M, Georgiou, HM and Kalionis B. (2019). An ex vivo Human Placental Vessel Perfusion Method to Study Mesenchymal Stem/Stromal Cell Migration. Stem Cell Investigation. 6:2
49 Abumaree MH, Al Harthy S, Al Subayyil A, Abomaray F, Khatlani T, Kalionis B, El- Muzaini M, Al Jumah M, Jawdat D; Alawad A, AlAskar A. (2019) Decidua basalis mesenchymal stem cells favor inflammatory M1 macrophage differentiation in vitro. Cells. 8(2). pii: E173
48 Abumaree MH, Alshehri NA, Almotery A, Al Subayyil A, Bahattab E, Abomaray F, Khatlani T, Kalionis B, Jawdat D, Muzaini MF, Al Jumah M, AlAskar AS (2019) Preconditioning human natural killer cells with chorionic villous mesenchymal stem cells, stimulates their expression of inflammatory and anti-tumor molecules. Stem Cell Research & Therapy 10:50
47 Kim SY, Khanal D, Kalionis B, Chrzanowski W (2019) High-fidelity probing of the structure and heterogeneity of extracellular vesicles by resonance enhanced atomic force microscope infrared spectroscopy (AFM-IR). Nature: Protocols. 14(2):576-593
46 Xia S, Wang J, Kalionis B, Zhang W, Zhao Y. (2019) Genistein protects against acute pancreatitis via activation of an apoptotic pathway mediated through endoplasmic reticulum stress in rats Biochemical and Biophysical Research Communications (BBRC) 509(2):421-428
45 Shakouri Motlagh A, O’Connor A, Brennecke SP, Heath DE*and Kalionis B*. (2019) Improved ex vivo expansion of mesenchymal stem cells on solubilized acellular fetal membranes. Journal of Biomedical Materials Research: Part A 107(1):232-242. (*Equal Senior Authors)
44 Kusuma GD, Brennecke SP, O’Connor AJ, Heath DE* and Kalionis B* (2018) Transferable matrices produced from decellularized ECM promote proliferation and osteogenic differentiation of mesenchymal stem cells and facilitate scale. ACS Biomaterials Science and Engineering, 4 (5), pp 1760–1769 (*Equal Senior Authors)
43 Alshabibi MA, Khatlani T, Abomaray FM, AlAskar AS, Kalionis B, SA. Messaoudi and MH. Abumaree (2018) Human Decidua Basalis Mesenchymal Stem/Stromal Cells protect endothelial cell functions from oxidative stress induced by hydrogen peroxide and monocytes Stem Cell Research & Therapy 9(1):275
42 Kim SY,  Khanal D,  Tharkar P,  Kalionis B, Chrzanowski W. (2018) None of us is the same as all of us: resolving heterogeneity of stem cell-derived extracellular vesicles using single-vesicle, nanoscale characterization with high-resolution resonance enhanced atomic force microscope infrared spectroscopy (AFM-IR). Nanoscale Horizons. 3, 430-438
41 Kusuma G, Yang M, Brennecke SP, O'Connor A, Heath D, Kalionis B (2018) Transferable matrices produced from decellularized ECM promote proliferation and osteogenic differentiation of mesenchymal stem cells and facilitate scale up. *co-senior authors. ACS Biomaterials Science & Engineering 4 (5), pp 1760–1769
40 Khatlani T, Algudiri D, Alenzi R, Subayyil AM, Abomaray FM, Bahattab E, AlAskar AS, Kalionis B, El-Muzaini MF, and M. H. Abumaree MH. (2018) Preconditioning by Hydrogen Peroxide Enhances Multiple Properties of Human Decidua Basalis Mesenchymal Stem/Multipotent Stromal Cells, Stem Cells International Article ID 6480793, Volume 2018
39 Abumaree MH, Bahattab E, Alsadoun A, Al Dosaimani A, Abomaray FM, Khatlani T, Kalionis B, El-Muzaini MF, Alawad AO, AlAskar AS (2108) Characterization of the interaction between human decidua parietalis mesenchymal stem/stromal cells and natural killer cells. Stem Cell Res Ther. 12;9(1):102.
38 Yang K, Leslie KG, Kim SY, Kalionis B, Chrzanowski W, Jolliffe KA, New EJ (2018) Tailoring the properties of a hypoxia-responsive 1,8-naphthalimide for imaging applications. Org Biomol Chem. 2018 Jan 24;16(4):619-624.
37 Kusuma GD, Abumaree MH, Pertile MD, Kalionis B (2018) Isolation and Characterization of Mesenchymal Stem/Stromal Cells Derived from Human Third Trimester Placental Chorionic Villi and Decidua Basalis Methods in Molecular Biology. 1710: 247-266
36 Bjørge IM, Kim SY, Manoa JF, Kalionis B, Chrzanowski W (2018) Extracellular vesicles, Exosomes and Shedding Vesicles in Regenerative Medicine – a new paradigm for tissue repair Biomaterials Science 6, 60-78
35 Al-Sowayan B, Keogh RJ, Abumaree M, Georgiou H, Kalionis B. (2017) The Effect of Endothelial Cell Activation and Hypoxia on Placental Chorionic Mesenchymal Stem/Stromal Cell Migration. Placenta 59:131-138
34 Shakouri-Motlagh A, Khanabdali R, Daniel E. Heath DE, Kalionis B (2017) The application of decellularized human term fetal membranes in tissue engineering and regenerative medicine. Placenta 59:124-130
33 Alshabibi MA, Al Huqail A, Khatlani T, Abomaray FM, AlAskar AS, Alawad AO, Kalionis B, Abumaree MH (2017). Mesenchymal Stem/Multipotent Stromal Cells from Human Decidua Basalis Reduce Endothelial Cell Activation Stem Cells and Development 15;26(18):1355-1373
32 Abumaree MH, Hakami M, Abomaray FM, Alshabibi MA, Kalionis B, Al Jumah MA, AlAskar AS. (2017) Human chorionic villous mesenchymal stem/stromal cells modify the effects of oxidative stress on endothelial cell functions. Placenta 59:74-86
31 Shakouri-Motlagh A, O'Connor AJ, Brennecke SP, Kalionis B, Heath DE. (2017) Native and solubilized decellularized extracellular matrix: A critical assessment of their potential for improving the expansion of mesenchymal stem cells. Acta Biomater. 55:1-12
30 Abumaree MH, Abomaray FM, Alshabibi MA, AlAskar AS, Kalionis B. (2017) Immunomodulatory properties of human placental mesenchymal stem/stromal cells. Placenta. 59:87-95
29 Kusuma GD, Abumaree MH, Perkins AV, Brennecke SP, Kalionis B. (2017) Reduced aldehyde dehydrogenase expression in preeclamptic decidual mesenchymal stem/stromal cells is restored by aldehyde dehydrogenase agonists. Scientific Reports. 7:42397
28 Kusuma GD, Brennecke SP, O’Connor A, Heath DE, Kalionis B. (2017) Decellularized extracellular matrices produced from immortal cell lines derived from different parts of the placenta support primary mesenchymal stem cell expansion.  PlosOne 12(2):e0171488. *equal senior and corresponding authors.
27 Abumaree MH, Almutairi A, Cash S, Boeuf P, Chamley LW, Gamage T, James JL, Kalionis B, Khong TY, Kolahi KS, Lim R, Liong S, Morgan TK, Motomura K, Peiris HN, Pelekanos RA, Pelzer E, Shafiee A, Natale D. (2016) IFPA Meeting 2015 Workshop Report IV: Placenta and obesity; Stem cells of the feto-maternal interface; Placental immunobiology and infection Placenta 48: Suppl 1 S17-S20
26 Abomaray FM, Al Jumah MA, Alsaad KO, Jawdat D, Al Khaldi A, AlAskar AS, Al Harthy S, Al Subayyil AM, Khatlani T, Alawad AO, Alkushi A, Kalionis B, Abumaree MH. (2016) Phenotypic and Functional Characterization of Mesenchymal Stem/Multipotent Stromal Cells from Decidua Basalis of Human Term Placenta. Stem Cells International vol. 2016, Article ID 5184601, 18 pages
25 Qin SQ, Kusuma GD, Al-Sowayan B, Pace RA, Isenmann SB, Pertile MD, Gronthos S, Abumaree MH, Brennecke SP, Kalionis B. (2016) Establishment and characterization of fetal and maternal mesenchymal stem/stromal cell lines from the human term placenta Placenta 39: 134-146
24 Abumaree MH, Abomaray FM, Alshehri NA, Almutairi A, AlAskar AS, Kalionis B, Al Jumah MA. (2016) "Phenotypic and functional characterization of mesenchymal stem/multipotent stromal cells from decidua parietalis of human term placenta" Reproductive Sciences. 23 (9) 1193-207
23 Kusuma G, Murthi P, Kalionis B "The Role of Mesenchymal Stem Cells in the Functions and Pathologies of the Human Placenta" Book Chapter “Placenta: The Tree of Life” Parolini O eds  Crc Press Llc Published 2016 pp13-38
22 Kusuma GD, Abumaree MH, Pertile MD, Perkins AV, Brennecke SP, Kalionis B (2016) Mesenchymal stem/stromal cells derived from a reproductive tissue niche under oxidative stress have high aldehyde dehydrogenase activity Stem Cell Reviews and Reports 12(3):285-97
21 Sun T, Kalionis B, Xia S, Gao W (2015) Role of Exosomal Non-coding RNAs in Lung Carcinogenesis Special Issue on "Transmission of Information in Neoplasia by Extracellular Vesicles, Membrane Protrusions, and Cell-Cell Fusion," BioMed Research International vol. 2015, Article ID 125807, 10 pages.
20 Kusuma GD, Menicanin D, Gronthos S, Manuelpillai U, Abumaree MH, Pertile MD, Brennecke SP, Kalionis B. (2015) Ectopic Bone Formation by Mesenchymal Stem Cells Derived from Human Term Placenta and the Decidua. PLoS One. 10(10):e0141246.
19 Ning Y, Huang J, Kalionis B, Bian Q, Dong J, Wu J, Wu J, Xia S. (2015) Oleanolic acid induces differentiation of neural stem cells to neurons: an involvement of transcription factor Nkx-2.5. Stem Cells International Volume 2015 (2015), Article ID 672312, 12 pages
18 Wan W-b, Cao L, Kalionis B , Xia  S.  (2015) Applications of induced pluripotent stem cells in studying the neurodegenerative diseases. Stem Cells International Volume 2015 (2015), Article ID 382530, 11 pages
17 Abomaray FM, Al Jumah MA, Kalionis B, Al Askar AS, Al Harthy, Jawdat SD, Al Khaldi A, Knawy BA, Abumaree MH. (2015) Human chorionic villous mesenchymal stem cells modify the functions of human dendritic cells and induce an anti-inflammatory phenotype in CD1+ dendritic cells. Stem Cell Reviews and Reports 11(3):423-41.
16 Liu H, Murthi P, Qin S, Kusuma GD, Borg A, Knöfler M, Haslinger P, Manuelpillai U, Pertile MD, Abumaree M, Kalionis B (2014). A novel combination of homeobox genes is expressed in mesenchymal chorionic stem/stromal cells in first trimester and term pregnancies. Reproductive Sciences 21(11):1382-94.
15 Abumaree MH, Alahari S, Albrecht C, Aye IL, Bainbridge S, Chauvin S, Clifton VL, Desoye G, Ermini L, Giuffrida D, Graham CH, Huang QT, Kalionis B, Lager S, Leach L, Li Y, Litvack ML, Nuzzo AM, Moretto-Zita M, O'Tierney-Ginn P, Powell T, Rolfo A, Salomon C, Serov A, Westwood M, Yung HW, Lash GE. (2014) IFPA Meeting 2013 Workshop Report I: Diabetes in pregnancy, maternal dyslipidemia in pregnancy, oxygen in placental development, stem cells and pregnancy pathology. Placenta. 35 Suppl:S4-9
14 Kusuma GD, Manuelpillai U, Abumaree M, Pertile MD, Brennecke SP, Kalionis B. (2015) Mesenchymal stem cells reside in a vascular niche in the decidua basalis, and are absent in remodelled spiral arterioles Placenta.  36 312-321.
13 Ning Y, Huang J, Kalionis B, Bian Q, Dong J, Wu J, Wu J, Xia S. (2015) Oleanolic acid induces differentiation of neural stem cells to neurons: an involvement of transcription factor Nkx-2.5. Stem Cells International Volume 2015 (2015), Article ID 672312, 12 pages
12 Wan W-b, Cao L, Kalionis B , Xia  S. (2015) Applications of induced pluripotent stem cells in studying the neurodegenerative diseases. Stem Cells International Volume 2015, Article ID 382530, 11 pages
11 Abumaree MH, Al Askar AS, Kalionis B, Hajeer AH, Fakhoury H, Al Jumah MA. (2014) Stem cell research and regenerative medicine at King Abdullah International Medical Research Center (KAIMRC). Stem Cells and Development. 23 Suppl 1:12-6.
10 Vaghjiani V, Vaithilingam V, Saraswati I, Sali A, Murthi P, Kalionis B, Tuch BE, Manuelpillai U. (2014) Hepatocyte-like cells derived from human amniotic epithelial cells can be encapsulated without loss of viability or function in vitro. Stem Cells and Development. 15;23(8):866-76
9 Abumaree MH, Al Jumah MA, Kalionis B, Jawdat D, Al Khaldi A, Abomaray FM, Fatani AS, Chamley LW, Knawy BA. (2013) Human placental mesenchymal stem cells (pMSCs) play a role as immune suppressive cells by shifting macrophage differentiation from inflammatory M1 to anti-inflammatory M2 macrophages. Stem Cell Reviews and Reports. 9(5):620-641
8 Abumaree MH, Al Jumah MA, Kalionis B, Jawdat D, Al Khaldi A, Al Talabani AA, Knawy BA. (2013) Phenotypic and functional characterization of mesenchymal stem cells from chorionic villi of human term placenta. Stem Cell Reviews and Reports. 9(1):16-31
7 Castrechini NM, Murthi P, Qin S, Kusuma GD, Wilton L, Abumaree M, Gronthos S, Zannettino A, Gude NM, Brennecke SP, Kalionis B. (2012) Decidua Parietalis-derived Mesenchymal Stromal Cells reside in a Vascular Niche within the Choriodecidua Reproductive Sciences 19(12):1302-14
6 Ackerman WE 4th, Bulmer JN, Carter AM, Chaillet JR, Chamley L, Chen CP, Chuong EB, Coleman SJ, Collet GP, Croy BA, de Mestre AM, Dickinson H, Ducray J, Enders AC, Fogarty NM, Gauster M, Golos T, Haider S, Heazell AE, Holland OJ, Huppertz B, Husebekk A, John RM, Johnsen GM, Jones CJ, Kalionis B, König J, Lorenzon AR, Moffett A, Moreira de Mello JC, Nuzzo AM, Parham P, Parolini O, Petroff MG, Pidoux G, Ramírez-Pinilla MP, Robinson WP, Rolfo A, Sadovsky Y, Soma H, Southcombe JH, Tilburgs T, Lash GE. (2012) IFPA Meeting 2011 workshop report III: Placental immunology; epigenetic and microRNA-dependent gene regulation; comparative placentation; trophoblast differentiation; stem cells. Placenta. 33 Suppl:S15-22.
5 Abumaree M, Al Jumah M, Pace RA, Kalionis B. (2012) Immunosuppressive properties of mesenchymal stem cells. Stem Cell Reviews and Reports. 8:375-392 
4 Betts D, Kalionis B, Hillier S. (2010) Stem cells roles in reproduction: what is the basic science? (Editorial) Molecular Human Reproduction. 16(11):791-2
3 Lash GE, Burton GJ, Chamley LW, Clifton VL, Constancia M, Crocker IP, Dantzer V, Desoye G, Drewlo S, Hemmings DG, Hiendleder S, Kalionis B, Keelan JA, Kudo Y, Lewis RM, Manuelpillai U, Murth P, Natale D, Pfarrer C, Robertson S, Saffery R, Saito S, Sferruzzi-Perri A, Sobrevia L, Waddell BJ, Roberts CT. (2010) IFPA Meeting 2009 workshops report Placenta. Suppl. 31, S4-20 
2 Castrechini NM, Murthi P, Gude NM, Erwich JJH, Gronthos S, Zannettino A, Brennecke SP, Kalionis B. (2010) Mesenchymal stem cells in human placental chorionic villi reside in a vascular niche. Placenta. 31(3):203-212
1 Betts DH, Kalionis B. (2010) Viable iPSC mice: A step closer to therapeutic applications in humans? Molecular Human Reproduction. 16(2):57-62
Stem Cell Laboratory
Share this page